Slowly adapting type I afferents from the sides and end of the finger respond to stimuli on the center of the fingerpad.
نویسندگان
چکیده
The central part of the fingerpad in anesthetized monkeys was stimulated by spheres varying in curvature indented into the skin. Responses were recorded from single slowly adapting type I primary afferent fibers (SAIs) innervating the sides and end of the distal segment of the stimulated finger. Although these afferents had receptive field centers that were remote from the stimulus, their responses were substantial. Increasing the curvature of the stimulus resulted in an increased response for most afferents. In general, responses increased most between stimuli with curvatures of 0 (flat) and 80.6 m(-1), with further increases in curvature having progressively smaller effects on the response. We calculated an index of sensitivity to changes in curvature; this index varied widely among the afferents but for most it was less than the index calculated for afferents innervating the fingerpad in the vicinity of the stimulus. Responses of all the SAIs increased when the contact force of the stimulus increased. An index of sensitivity to changes in contact force varied widely among the afferents but in all cases was greater than the index calculated for SAIs from the fingerpad itself. Neither the curvature sensitivity nor the force sensitivity of an afferent was related in any obvious way to the location of its receptive field center on the digit. There was only a minor correspondence between an afferent's sensitivity to force and its sensitivity to curvature. The large number of afferents innervating the border regions of the digit do respond to stimuli contacting the central fingerpad; they convey some information about the curvature of the stimulus and substantial information about contact force.
منابع مشابه
Sinusoidal movement of a grating across the monkey's fingerpad: effect of contact angle and force of the grating on afferent fiber responses.
Responses were recorded from cutaneous afferents innervating mechanoreceptors in the monkey's fingerpad. When gratings of alternating grooves and ridges were moved sinusoidally back and forth across the receptive field, the responses of the afferent were often not equal for the 2 directions of movement. To investigate this phenomenon, the position of the center of the afferent's receptive field...
متن کاملRepresentation of curved surfaces in responses of mechanoreceptive afferent fibers innervating the monkey's fingerpad.
The aim was to elucidate how the population of digital nerve afferents signals information about the shape of objects in contact with the fingerpads during fine manipulations. Responses were recorded from single mechanoreceptive afferent fibers in median nerves of anesthetized monkeys. Seven spherical surfaces were used, varying from a highly curved surface (radius, 1.44 mm; curvature, 694 m-1)...
متن کاملEncoding of object curvature by tactile afferents from human fingers.
Isolated responses were recorded from fibers in the median nerves of human subjects by using microneurography. Mechanoreceptive afferent fibers with receptive fields on the fingerpads were selected. The fingers were immobilized and spherical stimuli were applied passively to the receptive field with a contact force of 40-, 60-, or 80-g weight. The radii of the spheres were 1.92, 2.94, 5.81, or ...
متن کاملDifferential sensitivity to surface compliance by tactile afferents in the human finger pad.
We undertook a neurophysiological investigation of the responses of low-threshold mechanoreceptors in the human finger pad to surfaces of differing softness. Unitary recordings were made from 26 slowly adapting type I (SAI), 17 fast-adapting type I (FAI), and 9 slowly adapting type II (SAII) afferents via tungsten microelectrodes inserted into the median nerve at the wrist. A servo-controlled s...
متن کاملEffects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type I primary afferents from the fingerpad.
The capacity of a population of primary afferent fibers to signal information about a sphere indenting the fingerpad is limited by factors such as the inhomogeneity of sensitivity among the afferents, the pattern and density of innervation, and the effects of noise (response variability). Using experimental data recorded from single slowly adapting type I afferents (SAIs), we simulated the resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2000